Scrash: A System for Generating Secure Crash Information

Pete Broadwell Matt Harren Naveen Sastry
University of California, Berkeley
{pbwell, matth, nk¥@cs.berkeley.edu

Abstract 1.1 Crash reporting background

This paper presents Scrash, a system that safeguards ufgmote crash reporting tools appear in many forms, but

privacy by removing sensitive data from crash reports thafl! Perform the same basic task: gathering and trans-

are sent to developers after program failures. Remote crasRiting crash-related data to a remote database. Mi-
reporting, while of great help to the developer, risks theCrosoft’s Dr. Watson tool for Windows [4] performs crash-

user's privacy because crash reports may contain Sensiti\;‘gporting services for most Microsoft applications. Another

user information such as passwords and credit card numVindows-based tool is BugToaster [2], a third-party crash
bers. Scrash modifies the source code of C programs

{data collection utility that sends its reports to an indepen-
ensure that sensitive data does not appear in a crash repo‘?f:

nt database. Bug-Buddy for the GNOME desktop en-
Scrash adds only a small amount of run-time overhead andifonment [1] and Mozilla Talkback [3] are remote crash
requires minimal involvement on the part of the developer.

reporting tools used in the open source community.

The types of data contained in a remote crash report can
vary widely, depending upon the configuration of the re-
porting tool. Crash reporting tools typically record some
information about the environment in which the failed pro-

. . , __gram was running, including the error associated with the
Developers often examine a failed program’s state to dlagE:rash, program version information, loaded drivers, mem-

nose and fix software bugs. For this reason, operating syg;ry sage and open files. They also send back a subset of
tems and programming suites include tools to capture a P'%he data present in a core file: part or all of the call stack,

gram's state in a core file at crash time. The recent adver,.oqsor registers, and heap contents of the crashed pro-
of ubiquitous network connectivity for personal computers ram

makesremote crash reportingossible, whereby programs Remote crash reporting technology grants the developer

send crash information back to developers after a fallureaccess to potentially vast amounts of crash data, speeding

This practice, which allows developers to receive mforma—the diagnosis and repair of software vulnerabilities. For ex-

N : %mple, developers can fingerprint the call stacks returned
been distributed to users, has since become commonp_la crash reports to determine which bugs appear most often
[1,2, 3, 4]. Remote crash reporting offers many readllyand thus deserve the most attention. The developer also can

apparent benefits to developers, but the privacy-related Ims’uggest fixes or patches to the user based on the contents of
plications of the technology are not as well understood. a crash report

The contributions of this paper include Given the increasing prevalence of remote crash report-
« An explanation of the privacy-related problems poseding’.it is important to consider the security-related ri;ks as-
. sociated with the technology. Because they contain some
by remote crash reporting. :
or all of the memory contents of the program at the time
it failed, crash reports may include sensitive user informa-
tion such as credit card numbers, passwords or web browser
cookies. A recent Department of Energy security advisory
- regarding the Dr. Watson crash report tool for Office XP and
* A descrlptlon of an easy—tq—use system that Sa.feguardﬁﬂternet Explorer warns that the program could send sensi-
the user’s private information from exposure via CraShtive information to Microsoft, since the memory dump in
reports. the crash report might contain portions of the document be-
“The authors were supported in part by DARPA NEST contract N9 viewed [12]. A related concern about Dr. Watson is that

F33615-01-C-1895, NSF grants CCR-0093337, CCR-0085899, CCRIN€ program stores comprehensive crash reports in a world-
0085949, and CCR-0081588, and a grant from Microsoft. readable directory on the host computer [18]. This practice

1 Introduction

e An analysis of the tradeoffs inherent in the design of
core file cleaning systems.

raises security and privacy concerns, because a maliciowstructure of the application to the greatest extent possible.
party on a multi-user system could examine the crash reFor example, we allow transformations that move the mem-
port and extract confidential information. ory locations of variables since the contents of these vari-
There are inherent privacy risks associated with sendingbles are still present in the resulting core file. Thus, an
crash data to a remote party over a network. An initialinformation-preservingource code transformation retains
vulnerability is that the data may be intercepted en routeall of the same variables of the original program but may
Dr. Watson guards against this threat by encrypting the dateearrange their layout in memory.
stream with SSL [4], but GNOME'’s Bug-Buddy currently ~ The second phase of a filtering system modifies the core
sends crash reports unencryptedseadmail [1]. file generation process so that no sensitive data appears in
The primary concern, though, is the fate of the failurethe core file. In practice, this task can be accomplished by
data after it reaches the crash data repository. These repdgsmning a separate program to delete selected information
itories contain crash reports from many users, and may begfom a complete core file after it has been generated.
come popular targets if they are known to house sensitive We now outline two metrics to characterize the effective-
information. An important distinction here is that the userness of the filtering system. The first metric measures the
trusts the developer to produce quality software — the useusefulness of the core file to the developer, since debugging
installs and executes the software voluntarily, after all. Thea crash is more difficult if a critical piece of data has been
user should not, however, be obligated to trust the developgemoved from the core file. Using this metric, the origi-
to safeguard his sensitive crash data for an indefinite lengthal, full core file is the most useful for debugging, while
of time. Securely maintaining data takes a different kind ofan empty core file is useless. The second metric measures
expertise than writing secure and correct code. Thus, usetbe filtering system’s effectiveness from the user’s perspec-
may be more willing to participate in remote crash reportingtive, i.e., how well the system protects the user’s privacy and
if the crash reports can be stripped of personal informationdata. Using this metric, a user’s privacy is best preserved if
We also hypothesize that developers often won't wanthe filter removes all information.
to store a user’s sensitive information. The inclusion of The challenge, then, of designing a filtering system in-
privacy-sensitive information in the crash report presents aolves balancing the needs of the developer with those of
risk for the developer: a security breach of a crash reposithe user. The filtering system must preserve as much in-
tory could result in bad publicity or financial liability. For formation as possible for the developer while maintaining
these reasons, we believe thaith users and developers privacy for the user. A developer may choose any number
would like to eliminate sensitive information from crash of different privacy guarantees, depending on the particular
data. application and the degree to which privacy is necessary.
One such guarantee, for example, may prevent passwords
from being leaked, but may not conceal the length of the
2 Core File Filtering Systems password if this value is useful for debugging.
This model assumes that the developer is trustworthy. It
A core fileis a snapshot of a program’s execution state gendoes not guard against privacy violations by malicious de-
erated when a crash occurs. We propose a coréilifdeéng velopers, since a developer can easily insert a covert chan-
systemas a method of identifyingensitive informatiomnd nel into the program. Rather, the developer controls the
ensuring that it does not appear in a core file. The develfiltering system and defines the balance between the user’s
oper decides which categories of data should be considergativacy and the developer’s need to debug the application.
“sensitive” for each particular executable; the filtering sys-We imagine that advanced filtering systems might even give
tem must then prevent sensitive information from appearinghe user a choice between multiple privacy-utility tradeoffs.
in the final crash report. Converselysensitivdnformation ~ Thus, the primary goal of a filtering system is to protect
is allowed to appear in the crash report. A filtering systemagainst privacy violations after the core file has been gener-
is composed of two separate phases: the first phase trangted, particularly in crash repositories.
forms the application source code, and the second phase
transforms core files tr_lat_ result from application crashes_._ 2.1 Scrash goals
We place two restrictions on the source code modifi-
cation phase: the behavior of the application to be modOur system, Scrash, is an easy-to-use filtering system that
ified must be indistinguishable from that of the original, presents several tradeoffs between privacy guarantees and
and the transformation should not modify the program indeveloper utility of crash data. Its goal is to eliminate sen-
a way that makes debugging the filtered core file unnecessitive memory locations and their copies from a core file.
sarily difficult. Since the filtering system is supposed to pre-In addition, Scrash provides developer control over certain
serve a developer’s ability to debug the original applicationclasses of derivative data that may be removed from the core
the transformation must preserve the variables and contrdile. For example, Scrash considers the length of a sensitive

buffer to be sensitive as well, which ensures that the lengtfied application with a memory allocator to which we added
of a sensitive password buffer computed stden will 250 lines of new C code. We wrote the cleaning phase using
also be regarded as sensitive. The developer may choose %0 lines of C code.
override this rule, however, if she feels that disclosing the
length of the buffer may be beneficial for problem debug-)]
ging and does not pose a significant privacy risk. 3.1 Merging of source files
Scrgsh ignores privacy leaks resulting from indirect IN“\we use CIL (a C Intermediate Language implemented in
formation flows or other covert channels. As an example .
: . . OCaml) [11] as the infrastructure for our source-to-source
of such an information flow technique, the program counter, g .
._translation. CIL translates C code into a clean, easy-to-
and call stack can leak information on the state of sensitive__ ; .
. : .) manipulate subset of C. It includes drivers that act as drop-
variables. Consider the following example: .
in replacements fogcc, ar , andld so that CIL can be

used with existing makefiles. CIL uses these drivers to col-

char ¢ = passwor{D];

if (c>='a & c<='7){ lect all of the source files for a program, preprocess them,
Il stmt a and merge them into a single C file to facilitate whole-
} else { program analysis.
/I stmt b
}

_ 3.2 Analyzing the sensitivity of variables
If the program’s execution state indicates that statement

b was executed, then an adversary can infer that the pas®ur system extends each type in a C program with a
word does not start with a lower case letter even if the pasdype qualifier to indicate whether or not it may hold
word variable is marked as sensitive. Eliminating controlsensitive information. Type qualifiers are an additional
flow privacy leaks and other covert channels while retainingspecification of the traditional C types. For example,
enough information for debugging is difficult, so Scrash ig-“$sensitive int " is the type of an integer variable
nores such vulnerabilities. For example, the processor reghat may hold sensitive information at some point during
isters and even the entire call stack would not be availablés lifetime. When declaring a variable, the developer can
to the developer in a system that seeks to guard against cofpecify that the variable will contain sensitive information
trol flow privacy leaks. All reveal the state of prior control by adding theSsensitive annotation. For all unanno-
flow decisions and could be used to discover informatiortated variables, we use the CQual type qualifier inference
about the state of sensitive variables that had been used @ngine to determine whether the variable may hold sensi-
conditionals. tive information [14].
CQual performs an interprocedural program analysis to
determine where sensitive data might flow from the initial
3 Implementation set of sensitive variables annotated by the programmer. If
CQual detects an assignment from a sensitive variable to an
Scrash seeks to eliminate sensitive information from théunconstrained” variable, the unconstrained variable will be
heap, stack, and global variables while still providing use-considered sensitive. Thus, CQual determines where the
ful information to the developer. We perform source code$sensitive qualifier spreads throughout the program.
transformations to place the contents of any sensitive variAfter CQual has finished, we know that all remaining un-
ables in a separate region of memory, which we then eraseonstrained variables only contain insensitive data, since
during core file generation to ensure that it is not transmitthey never receive any assignments from sensitive variables.
ted as part of a crash report. Thus, the stack, globals an@onversely, if CQual determines that a variable is sensitive,
main heap in our modified core file will only contain in- it may contain sensitive information during the execution of
sensitive information, so that the crash reporting tool is freehe program, since there is a possible assignment to it from
to transmit any of these regions. The key difficulty of this a known sensitive variable. The question of whether data
task, which we will address below, is identifying the sen-may be sensitive is analogous to the question of whether
sitive data. Even though the heap is not often transmittedt may betainted so we can use the same analysis as in
using current crash reporting tools, we make a distinctiorShankar et al. [14].
between the sensitive and insensitive heap in the case that it As an alternative to annotating specific data at the point
may be transferred when sending a more detailed crash rét-enters the program, the programmer may choose to use
port. Making this distinction has a negligible performancea pre-annotated header file that marks as sensitive all data
cost, so we view the added safety it provides as worthwhilereturned by functions likeead andrecv . At the cost of
We implemented the source code transformation phase innnecessarily marking some values as sensitive, this option
1200 lines of new Objective Caml code. We link the modi- makes it easy to denote user data as sensitive without the

f void * smalloc (sizet size int issecur
adﬁg:;g —] void * scmalloc (size.t nmemb sizet sizg int issecurg;
ensitive heap region B - .
(managed by Smallsc) vo!d sfree (void _ptr), . _
void * srealloc(void * ptr, sizet sizé);

Sepsitive heap region
(managed by Smalloc) . .
Figure 2: The Smalloc allocator interface. The alloca-

tion functions take an extra boolean parameter that specifies
| Sensitive globals | whether the data should be allocated in the sensitive region

or on the insecure heap.

Shadow stack (sensitive) l

#include <crypth>

f #include <malloch>
~—— a #include <stringh>

Higher T int $sensitive privatd2] = {0, 1};
Insensitive call stack

addresses

void getPassworghar cryptpw[14]) {
char $sensitive * password= malloc (255);

. . memcpy (cryptpw, crypt (passworg "00"), 14);
Figure 1: Layout of a process’s memory when using Scrash}, Py (cryptp ypt (p) 14)

Both heap regions are managed by Smalloc. The sensitive’

globals, sensitive stack, and sensitive heap are embeddagld check) { .

within the insensitive heap region. The arrows indicate the char $sensitive Cryp.tpV\{lA']’
. . getPasswor@ryptpw);

direction of stack growth. }

need to enter program-specific annotations. We take thigigure 3: A sample code fragment that we will use to il-
approach in our evaluation experiments. lustrate some of the transformations that Scrash uses (see
The CQual stage outputs the original program with at-Figure 4). It contains a sensitive global, a pointer to sensi-
tributes added to each variable describing its sensitivitytive data, and a sensitive stack variable.

These annotations allow later stages of Scrash to determine

whether a variable should reside in the secure or insecure
region of memory. cator, to manage this “secure” region. It is based on the

Vmalloc package, which provides an ideal platform for cre-
_ ating allocators [15]. The interface to Smalloc is similar to
3.3 Smalloc: secure malloc malloc . The only difference is that we add an extra pa-

After identifying sensitive variables, it becomes possible torameter to thesmalloc function to identify w_h_ether @he
new memory should be allocated in the sensitive or insen-

erase their contents before shipping the core file. A diffi- " . .
bping sitive memory region. The signatures of tlealloc and

culty arises in determining where the information resides in

the core file, however, since in general the sensitive varilcree functions remain unchanged. See Figure 2 for the

ables will be scattered throughout the entire core file. Wecomplete Smalloc mterfgge. .
Smalloc creates sensitive memory regions for heap allo-

need a way to communicate sensitivity information from the . - ; ”
cated variables, sensitive global variables, and the sensitive

static analysis to the runtime cleaning process. =2y 9 ‘
One method to recognize sensitive variables would be téta(.:k' We will discuss these regions below. Each of the
gions is actually embedded within the normal heap seg-

append an immutable tag to each sensitive variable; the tal . : :
would describe the variable’s sensitivity status. The post- ent. The globals and stack regions are statically sized and

processing cleaning step could then iterate over the core ﬁlgllocated_ at program |_n|t|al|zat|on. The size of the sensitive
and remove or overwrite all sensitive variables by checkindqealo region is dynamic.
for the tag.
An alternative approach, which we utilize, groups sen-3 4 Transformations
sitive memory locations together and places an identifying
header at the start of the region. This approach is ultimatelyVe perform transformations on the program source code to
more space-efficient than tagging each variable separatensure that the variables the CQual phase marks as sensitive
and simplifies the process of removing sensitive data fronare placed into the sensitive memory region by Smalloc li-
the core file. brary routines. CIL provides an ideal platform for perform-
We have written Smalloc, a region-aware memory allo-ing these transformations. We outline each of the transfor-

typedef unsigned int sizet; mations below. The results of applying the complete set of

struct check shadow { transformations to the program in Figure 3 can be seen in
char cryptpw[14] ; Figure 4.
struct __smallocglobals {
int privatg2] ; 3.4.1 Sensitive heap variables
S“}éCt ffsm?‘g(’(‘*g")ba's *ﬁsma”o‘lg'ObaLVﬁf ; obalini) - We allocate memory on the sensitive heap when the results
\C/ﬁiar Es’t;ggo?rﬁ’r((’;consgy ctor.) --smalloc globalinit)() : of amalloc call are assigned to a pointer declared with
void *sreallogvoid *ptr , uns’igned int size) ; the $sensitive gualifier. Recall that CQual assigns this
void sfregvoid *ptr) ; _ S qualifier to variables that could potentially contain sensitive
vo!d *scalloc(unsgned |r_1t nr_nemb_ unIS|gned int size int issecure) ; information. Similarly, the absence of ti§sensitive
void *smallogunsigned int size, int issecure) ; li inter indicates that th hould b
extern char *crypt(char const*__key , char const*__salt) ; qualiner on a p0|_n er m_ _|ca €s that the memory shou e
extern void *mallodsize.t __size) ; allocated on the insensitive heap. Thus, we change each of
extern void *memcpyvoid * __restrict __dest, the allocation calls to use the Smalloc allocator, using the
. void const *__restrict __srg, size.t __n) ; presence of thésensitive attribute to denote which
void getPassworghar *cryptpw) { . he Small I We similarl |
char *password; region t e Smalloc a ocator uses. We similarly replace
char *tmp ; calloc with scalloc
\{loid const * __restrict tmp__0 ; In addition to replacing the allocation functions, we re-
tmp = (char *)smallog255U, 1) place any instances fiee andrealloc with the Smal-
password= tmp; loc equivalentssfree andsrealloc . These functlons.
tmp___0 = (void const*) have the same arguments and return types as the functions
crypt((char const*)password (char const)"00"); they replace, so we can perform a simple substitution.
memcpy(void *)cryptpw, tmp___0, 14U);
return;
} 3.4.2 Sensitive stack variables
void checKvoid) { There are two possible transformations that can be applied
struct check shadow*check shadow; L. . -
to place sensitive stack variables within the secure memory
check shadow= (struct check shadow*)stackPointer region:
stackPointer= stackPointer+ sizeofstruct check shadow); Heap allocation of local variablesThis transformation
%Etpasswo'(‘“har)(check shadow->cryptpw); moves the sensitive stack variables into the secure heap.
stackPointer= (char *)check shadow At function entry, we aIIocatfe_a block of space on t_he se-
return;; cure heap for all of the sensitive local variables, which we
} deallocate before exiting. We also rewrite all references
) 4 within the function to point to the reallocated stack vari-
void __smallocglobaLinit(void) { ables. _ . .
This transformation, however, requires adding a
"sma"oﬁgcéopa“ﬂ = t(s”u"t *Ilfsmel‘"ff?")’bel")s ") smalloc andsfree call to any function with sensitive
smallogsizeo(struct -_smalloc.globals),) . .
__smalloc globalvar—>privatd0] = (int)O; Si_i&_le va_lrlables. We found that these ext_ra calls had a sig-
__smallocglobalvar—>privatd1] = (int)1; nificant impact on performance (see Section 4.2), so we de-
} veloped an alternative transformation for stack variables:
} Shadow stackA shadow stack is a separate area of mem-

ory that parallels the normal stack and holds sensitive vari-
ables. The shadow stack resides within the secure region,
maintaining the invariant that all sensitive information is
contained within that region. The shadow stack’s size is
set to the maximum size of the program’s regular stack. We
igsert code to adjust the shadow stack pointer, which we
iImplement as a global variable, at the entry and exit points
of each function. This approach offers better performance
han allocating all local variables on the secure heap.

Every time control reaches a function body entry point,

Figure 4: The results of running Scrash on the code frag
ment from Figure 3. Note that the constructor function
_smalloc _global _init allocates the sensitive global
inside the__smalloc _globals structure, which is allo-

prior tomain and is specified with theconstructor ~ __
attribute. The sensitive heap variapkessword is now al-
located on the secure heap. Finally, the sensitive local arra

cryptpw is allocated on the shadow stack. A new struc- he shad K poi o d by th bined
ture,check _shadow, contains this variable. Maintenance the shadow stack pointer Is incremented by the combine

of the shadow stack is performed on entry and exit of thesize of all of the sensitive variables for that frame. Thus,
check function the shadow stack grows toward higher memory addresses.

We rewrite all accesses to variables declared with thehe tag. A crafty adversary could arrange for a counterfeit
$sensitive qualifier to use the new sensitive stack. We secure region tag to appear in an insensitive memory re-
also insert code to decrement the stack pointer just beforgion prior to the secure region, and construct the metadata
control leaves the end of the function body. After exiting so that the cleaner overwrites the actual secure region tag.
a function, the memory located at higher addresses thaSince the real secure region tag has at this point been erased
the current shadow stack pointer is unused, but it still confrom the core file, the cleaner would find no further tags and
tains the remnants of the sensitive information that the funcgo on to generate a core file that still contains sensitive in-
tion body placed there. We could overwrite the contents oformation.

this memory to eliminate the leftover values, but since the To counter this attack, we wrote the cleaner to locate all
shadow stack is allocated within the sensitive region, it willsecure region tags that might appear within a core file first,
be overwritten during the core file cleaning process anywayand then perform the overwriting. This approach prevents
Thus, overwriting the unused portion of the shadow stack iss metadata entry earlier in the core file from causing the
an unnecessary step, as the cleaning process will erase aleaner to disregard a later one. Thus, all sensitive infor-
of the stack contents, even the unused portions. See Segration will still be removed from the core file. An attack

tion 3.5 for a description of the cleaning process. of this form may still induce the cleaner to remove insen-
sitive data from the core file, but this is only a denial of
3.4.3 Sensitive global variables service attack. The shortcoming doesn’t represent a privacy

or security threat, though it could hinder the developer from
Finally, we define a new structure to contain all debugging the core file. We view guarding against denial of
of the sensitive global variables, instantiating it asservice attacks as a secondary concern, compared to pro-
_smalloc _global _var . We allocate this structure on tecting the user’s privacy.
the secure heap with a special initialization function, using One could imagine incorporating core file cleaning into
the gcc -specific attribute “constructor” to ensure that this the operating system routines that produce the core file.
function runs beforenain() . We also perform any ini- Making this change would ensure that the cleaning process
tializations that are needed for sensitive global variables bylways runs before the crash report is written to disk, and
expanding their initializer clauses into regular C statementsyould prevent problems such as the Dr. Watson bug men-
and placing them in the constructor function. tioned in the introduction.

3.5 Postprocessing: cleaning the core file 3.6 Implementation details

After employing the above transformations, all of the pro-3 6 1 Threads

gram’s sensitive information will be fully contained within

the secure memory region. The core file will still contain The Vmalloc package, on which the Smalloc allocator is
the sensitive information, however, if the program crashesuilt, is thread-safe, so extending our design to multi-
and no further filtering steps are taken. At this point, we usdghreaded programs is straightforward. If sensitive local

a cleaning process to overwrite the secure region of a coreariables are transformed into heap-allocated structures, no
file after it has been generated. The cleaner operates by firshanges to our system are necessary. Performance is a con-
searching for a special tag that identifies the metadata fotern, however, since the many callssmalloc in each

the secure region. The metadata encodes the type and sitwead will contend for the lock that guards the heap.

of the region, allowing the cleaning process to overwrite it. Alternatively, using the shadow stack approach to hold

Recall that the secure heap region is dynamically sizedthe sensitive local variables requires each thread to have its
When the region changes size, its new size is reflected inown shadow stack, just as each has its own traditional stack.
the metadata. If the region shrinks, memory that previouslyThe shadow stack pointer, which in single-threaded pro-
contained sensitive data will remaduitsideof the sensitive grams is simply a global variable, must therefore be stored
region. Thus, the cleaning process will not overwrite it. Tointo thread-local storage Each thread has a pointer to its
maintain the invariant that sensitive data resides only withirown shadow stack. The stack space for the thread is al-
sensitive regions, Smalloc overwrites the contracted memlocated during the first use of the shadow stack and freed
ory whenever a sensitive region shrinks. when the thread terminates.

The cleaning process must take special care to ensure thatSince the same function may be called in different
an adversary does not trick the cleaner into leaving portionthreads, each function with sensitive local variables re-
of the sensitive region intact. Consider a cleaning procestieves the shadow stack pointer for the current thread upon
that scans through the core file sequentially, searching foentry to the function. When the pointer is updated, it must
the metadata that marks the boundary and size of a secube stored into thread-local storage. For programs using
region and then erasing the specified number of bytes aftd?OSIX threads, we add the following to the beginning of

each function body: pointer, and shadow stack pointer, all of which must be
stored injmp _buf for longjmp to work properly. On a

void * stackPointer= pthreadgetspecifi¢scrashstack key); longjmp call, we restore the stack pointer back into thread
stackPointer+= sizeofstruct function_.shadowy, local storage.
pthreadsetspecifiscrashstack key, stackPointéey;

and before each return statement, we add: 3.6.3 Sensitive function arguments
stackPointer—= sizeofstruct function shadow; The C calling convention plapes all arguments to a func';t.ion
pthreadsetspecifitscrashstack key, stackPointe; on the call stack. Thus, calling a function with a sensitive

value will place sensitive information on the unprotected

Note that the structuréunction _shadow holds the call stack. Our solution to this problem does not require
contents of all sensitive local variables for that function. any effort on the part of the programmer; instead, a Scrash

The first part of the structure’s name identifies the func-transformation converts a sensitive argument into a pointer
tion in which it is used. reference to the sensitive data. Thus, the sensitive value is

An alternative to thread-local storage would be to addnever placed on the call stack. Naturally, all such function
an extra parameter to every function that holds the addredsodies, declarations, and call sites need to be modified. To
of the current thread's shadow stack. Unfortunately, it istransform the call site, we first allocate space on the sen-
often not possible to change the signature of every functionsitive stack for any sensitive arguments. Then, we make a
since functions such as event handlers and signal handleespy to preserve the call-by-value semantics of C and call
are called by underlying systems. the function with a pointer to the data.

Rewriting a function is not possible if the program ex-
ports a fixed API, passes a function pointer to a library call-
back function, or has a variable humber of arguments. If
A naive implementation of the shadow stack will not cor- Scrash detects that the address of a particular function is
rectly handlesetimp andlongjmp . These functions are ever passed as an argument, it will refuse to modify that
frequently used as a mechanism to pass control non-locallfunction, since changing its signature could yield unpre-
as an interprocedural goto, which is useful for error han-dictable behavior. Instead, Scrash prints a warning advis-
dling. Thesetjmp call saves the register contents, in- ing the user of the security vulnerability. It is then up to
cluding stack pointer and program counter, ijmg _buf the developer to modify the API to avoid passing sensitive
structure. Alongjmp call takes a previously populated variables by value.
jmp _buf as an argument and restores the registers saved
in this structure. Since restoring tjrap _buf replaces the
stack pointer and program counter, the stack is unwoundt Evaluation
and the program returns to the site of gajmp call, this
time with a non-zero return value frosetjimp . We tested our system by applying the Scrash code transfor-

Scrash maintains its shadow stack by pushing a newnations to a set of open-source applications and then com-
frame upon entry to a function and popping it just prior to paring the behavior of each modified program to that of the
exiting the function. However, the defadtingjmp im- original. We chose our set of test applications to include
plementation is unaware of the Scrash shadow stack, amtbmmonly-used graphical and command-line programs that
will not properly restore the shadow stack pointer as it doesiandle significant amounts of user data.
the regular stack pointer. Our first graphical test application wagnomecal ,

We address this problem by using CIL to introduce athe calendar portion of the GNOME Personal Informa-
new structurescrash _jmp _buf , which replaces a reg- tion Management suite. This application consists of about
ular jmp _buf . It has two fields: one to contain the 25,000 lines of C code. Our other GUI-based test applica-
old jmp _buf structure and one to store the shadow stackion was J-Pilot, a desktop organizer application for Palm
pointer. We then search for all calls setimp and OS-based handheld computers that contains about 42,000
longimp and replace them with functions that properly lines of C code. It provides support for datebook, ad-
maintain the shadow stack pointer in addition to the regisdress storage, memo and “to-do list” handheld applications,
ters injmp _buf . while also facilitating PC-to-handheld data synchronization

Note that when callingetjimp in a threaded environ- and backup. Botlgnomecal and J-Pilot use the GTK+
ment, we store the thread-specific shadow stack pointegraphical user interface libraries. When instrumenting these
(normally stored in thread-local storage) in tingp _buf . programs, we first examined the source code to determine
This transformation is necessary because a thread's statewhich library I/O routines were most likely to be involved in
Scrash is described by the contents of the registers, statke processing of sensitive user data. We then included ap-

3.6.2 setjmp/longjmp

" core.normal.dirty:
File Edit Setfings Help

000732€0: 6d80 0608 7fd0 0708 Ocf3 ffbf 0004 0000 M..............
@ < 4@ B 000732f0: 0200 0000 3417 ffbf 854 0908 98f8 fibf ...4...T..
00073300: 6842 0908 1800 0000 a066 2440 6162 7261 hB......f$@abra

00073310: 6361 6461 6272 6100 5842 0908 f058 0908 cadabra.XB..X..
Day Visw |Waa>< ew | Monith Miew |Vea, Ww' 00073320 c830 0840 cdef 0f40 7c3b 0908 28f4 ffbf .0.@...@):. (...
00073330: 284 ffbf 5842 0908 0000 0000 8855 0908 (..XB.......U..

Mew Pres Tocay Mext Go to

Sun Feb 02 2003
- — core.smalloc.dirty:
WETEY 5[4 onuay 4 2003 b

NI 0006a330: 70d0 2340 0000 0000 0000 0000 0000 0000 pH#@..
0006a340: 70d0 2340 0904 0000 0100 0000 Ocf0 edfe p#@...

0006a350: 6162 7261 6361 6461 6272 6100 0000 0000 abracadabra....
12 13 14 15 16 17 18 0006a360: 80d3 2340 0000 0000 70d0 2340 0000 0000 .#@...p4@...

19 20 21 23 24 25 0006a370: 70d0 2340 0000 0000 90d3 2340 0000 0000 pH#@.....H@....
J 26 27 28 29 30 3

03:30

Doctor Appointment

core.smalloc.clean:

To-clo list 0006a330: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
[00062340: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
00062350 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX

Summary

Meeting 0006a360: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
Tavses 0006a370: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX
e Edt.. Deletz |

Figure 6: Excerpts from the core file of an induced crash
in thessh client. The top core file excerpt shows the stack
‘with the password present — “abracadabra” from an unmod-
ified ssh client. The middle core file is from a version of
ssh that has been modified using the Scrash transforma-
tions and annotations. The password now resides in the se-

)))) cure region, but since the cleaning process has not yet been
propriate declarations of these functions in a pre-annotategdy«.uted on the core file, the password is again present. The
header file (as described in Section 3.2) prior to performing,,tom core file shows that the cleaner overwrites the se-
sensitivity inference on the program source code. cure region, and all occurrences of the password have been

We chose the OpenSSH secure shell client, which conremoved.
tains about 39,000 lines of C code, as our command-line
test program. For this application, it was necessary to trea

all data typed by the user at the keyboard as sensitive. Thé'1 Security evaluation

password used to set up a secure connection is the Moge examined core files produced by our modified version
obvious sensitive value, but even after the connection is et ssh to verify that sensitive information was placed only
tablished, the client may send passwords and other privaig the secure region and that the cleaning process properly
information to the server. Therefore, we again used pregjiminated sensitive data. Figure 6 shows the excerpts from
specified annotations to mark all data returnedrégd three core files in which we induced a program crash. The
(among other functions) as sensitive. top core file is the original version afsh, in which the

After Scrash ran its compile-time type inference on ourpassword is present on the stack. The middle core file is the
test applications, 24% and 10% of the stack variables usetesult of runningssh after applying the Scrash transforma-
by gnomecal and J-Pilot, respectively, were marked astions, in which the password resides in the secure heap. The
possibly containing sensitive data. Fsh , this figure was final excerpt shows the result after running the cleaner.
59%.

We insfcr_umented our Sm_alloc library to reco_rd the sizeq 2 Performance
and sensitivity of each run-time memory allocation request
issued during the lifetime of a program. We then used eackinding privacy-relevant and performance-critical applica-
of the test applications for brief session. The run-time val-tions proved to be a rather tricky exercise for us. Many of
ues from these tests are listed in Table 1. We only countethe applications for which one would be concerned about
allocations performed by the application and not by anyleaks of personal data were interactive: editors, browsers,
linked, precompiled libraries; this issue is discussed furtheinformation management tools, or remote access programs
in Section 5. The overall percentages of memory operationkke ssh . In the course of testing, we found that the Scrash
that dealt with sensitive data were lower for the graphicaltransformations did not reduce the responsiveness of the
applications than fagsh . In ssh , the insensitive heap con- interactive applications we tested. In an attempt to bet-
tains a few control structures representing the internal stateer quantify the performance impact of Scrash, we ran two
of the connection, while the majority of the heap allocationstests: one real application and a micro-benchmark to illus-
are for sensitive user data that is to be transmitted over thtsate worst case behavior.
network. We argue that the connection data is more relevant To test Scrash against a privacy-sensitive program that
for debugging than the data being transmitted. also has performance requirements, we chose to transfer

Figure 5: A screenshot of the GNOME Calendar applica
tion running with the Scrash transformations.

GNOME Calendar J-Pilot OpenSSH client

number of | percent || number of| percent || number of| percent

Size (bytes)|| requests | sensitive|| requests | sensitive| requests | sensitive
0-1023 4216 86.9% 5914 26.7% 2073 97.6%
1024 - 2047 9 77.5% 0 - 46 100%
2048 - 3071 1 0% 1 100% 67 100%
3072 - 4095 7 85.7% 1 100% 3 100%
4096 - 5119 2 50% 2 100% 50 100%
5120- 6143 1 100% 0 — 3 100%
6144 - 7167 0 - 0 - 3 100%
7168 - 8191 7 100% 0 — 2 100%
8192 - 9215 0 - 0 - 1 100%
9216+ 9 100% 0 - 12 100%

| Total | 4252 | 86.9% || 5918 | 26.8% | 2260 | 97.8% |

Table 1: The number and size of all run-time memory allocatisngafloc , scalloc , srealloc) performed by our

test applications during a brief test run and the percentage of these allocations that handled sensitive data. We only count

allocations done by the applications and not by any libraries that they use.

large files usingscp . This program has many of the same

Sensitive Elapsed | Increase privacy vulnerabilities assh, as it in fact calls thessh
locals Time(s) over executable. The program is non-interactive, allowing us to
moved to: baseline measure changes in performance easily. For the tests, we
Heap 27.24 33% transferred a 100-megabyte file to a server on the same ma-
Shadow stack 21.71 6% chine to eliminate network-induced performance variabil-

| Baseline | 2051 [- | ity.

The second test is a microbenchmark that exercises the
call stack heavily. We wrote this recursion-intensive bench-
Table 2: Time needed faicp to transfer 100 megabytes of mark to expose the worst case performance of Scrash, since
data to a server on the same machine. The results demosvery function entry and exit requires intervention from
strate that using a shadow stack gives much better perfoScrash. Furthermore, all locals are declared to be in the
mance than storing sensitive locals in the heap. sensitive stack, increasing the normal memory access times.
The microbenchmark computes the greatest common di-
visor of 50 million pairs of random numbers, where each
number is between 1 and 10 million. The benchmark uses

Sensitive Heap Elapsed | Increase Euclid’s algorithm, which admits a natural recursive imple-
locals allocs | Time(s) | over mentation. Each invocation performs very little computa-
moved to: baseline tion: a modulus call, two comparisons and assignments,
Heap 657393865| 242.64 | 373% and then a recursive call. Due to the heavy use of recur-
Shadow stack 2 62.42 22% sion, the amount of stack maintenance overhead that this
’ Baseline H 1 ‘ 51.28 ‘ — ‘ microbenchmark incurs is significantly greater than that of

a typical application. We used the same random seed when
testing all implementations, processing 657,393,863 func-
Table 3: Results of running the greatest common divisotion calls per test run. To exercise the Scrash transforma-
(GCD) microbenchmark. We computed 50 million GCD tjons, we marked all local variables as sensitive, as well
computations on integers. The other two implementationgs one global variable that we used to track the number of
place the sensitive local variables on the heap and shadomnction calls.

stack. The first column indicates the number of heap alloca- e performed the above tests on a 1.5 GHz Pentium 4
tions that the microbenchmark makes. The results demong;i, 1 gigabyte of RAM, running a Linux 2.4.18 kernel
strate that using a shadow stack gives much better perfofgiih gcc 2.95. Al tests were run with optimizations turned
mance than storing sensitive locals in the heap. on at -O3. The tests were conducted under three different
configurations: without Scrash (the baseline), using Scrash

to place all sensitive local variables on the heap, and finallycalls thexmalloc wrapper, the only instance afalloc

using the shadow stack to hold the sensitive local variablesn the ssh source code is within themalloc wrapper.
The results, shown in Tables 2 and 3, are based on the avescrash must choose whether to translate iidloc call
ages of three separate test runs per configuration. See Seanto an allocation on the secure or insecure heap at com-
tion 3.4.2 for a description of the two Scrash configurationspile time. Since the results of this allocation are assigned to

Our initial strategy of moving sensitive stack variables tosome variables declared with tBeensitive keyword,
the heap via a call temalloc at the beginning of each ap- Scrash conservatively translates thalloc call to allo-
plicable function, as described in Section 3.4.2, resulted irtate all its storage on the sensitive heap. As aresult, all heap
a large performance penalty of 33% overheadsklr and allocations inssh would normally appear on the sensitive
373% for the microbenchmark. The microbenchmark sufheap. To avoid this problem, we replaced #malloc
fers a larger overhead because it performs over 600 milliofiunction with an equivalent preprocessor macro at each al-
allocation and free calls — one for every procedure entrylocation point. Thus, in the post-processed file, there is now
It also incurs a much higher percentage increase over thenemalloc call where eacikmalloc call previously ap-
baseline because function entry time is a larger percentageeared, allowing the differemballoc calls to be assigned
of the CPU time for the microbenchmark than $sh . to different heaps.

The second strategy, using Scrash transformations to im- We must be a bit careful in evaluating the success of a
plement a shadow stack, added much less overhead: 228échnique like Scrash. For example, the absence of the pass-
for the GCD microbenchmark and 6% overheaddsih — word from the core file does not mean that there is no sen-
a moderate overhead for the realistic application scenariitive information related to the password in the core file. It
This overhead is a result of maintaining the shadow stacknay be possible to ascertain the size of a sensitive buffer by
pointer at the beginning and end of the function, as well acomparing pointers. If is a pointer to a sensitive data field,
the extra level of indirection required to access local vari-an attacker can bound the size of the sensitive data by com-

ables. paring all other heap-allocated pointetsto the sensitive
We see that the shadow stack gives much better perfodata pointer:
mance than placing sensitive locals on the heap. Conse- min(t — p)

guently, we enable the shadow stack by default. t=p

We conclude that Scrash adds only a minimal perfor- That is, the size of the buffer atis at most the differ-
mance overhead to real applications. ence betweep and the first pointer whose value is greater
thanp. Thus, it may be possible to reveal the length of a
. . variable-sized sensitive buffer even if all variables that ex-
5 Discussion plicitly store this length are kept in the sensitive memory
region. This apparent vulnerability would seem to suggest
In addition to the runtime overhead imposed by Scrash, thénhatp is also sensitive and should be placed on the sensitive
system requires some effort from the programmer. This efheap, adding an extra level of indirection to all accessgs to
fort includes annotating an initial set of sensitive variablesWe eschew this extra indirection, however, in favor of pro-
or deciding to use a pre-annotated “prelude” file that auviding greater debugging usefulness to the developer, since
tomatically marks the parameters and return values of cetiding the pointer values may hamper the developer’s abil-
tain functions as sensitive. In addition, it was necessanjty to track down memory problems.
to make 33 lines of source code changessb before Another issue with Scrash involves the use of precom-
it could run through the Scrash transformation, due to thepiled and dynamic (shared) libraries. Current libraries such
fact that CIL is more restrictive in type checking thgec . asglibc are written without consideration of the con-
Such changes included fixing missing or mismatched varieept of sensitive data. CQual understands the semantics of
able declarations. manyglibc functions and will correctly propagate quali-
The performance of the Scrash code transformation todfiers across, for example, callsmemcpy. There is no way,
is adequate. It takes roughly three minutes to run thénowever, for a source-level translation like Scrash to mod-
entire Scrash transformation @sh , from preprocessing ify the storage of variables in precompiled libraries. For
through program modification, using the same test machinexample, a precompiled version sfrcpy may keep a
as above. char temporarily on the stack, strlen may keep a run-
One feature of thesh code was particularly problematic ning string length count as a stack variable. In the event of
for Scrash: all calls tmalloc are performed using awrap- a crash, these variables will remain on the insecure stack,
per functionxmalloc , that checks for a null return value. where they can leak pieces of sensitive information. One
Recall that Scrash rewrites calls to tim@lloc functionto solution would be to recompile libraries with Scrash under
usesmalloc , locating the new region on either the securethe assumption that all data passed to a shared library is sen-
or insecure heap as appropriate. Sincedble program sitive. The library would therefore use the shadow stack and

sensitive heap so that sensitive data may be passed to tRegion-based memory allocators in which multiple heaps
shared library without fear of privacy violations. However, are exposed have also been studied [7, 8]. While they
we have not implemented this solution in our prototype. present aricher set of semantics than we need, these sources
As we discussed in Section 2.1, there are tradeoffs beaelped to inspire our implementation. We used the Vmal-
tween user privacy and utility to the developer when dealindoc software release as the basis for Smalloc, our secure
with crash information. Scrash provides the developer withmemory allocator [15]. Vmalloc provides an alternative al-
a larger set of tradeoffs than the all-or-nothing choice thatocator tomalloc that exposes many different allocation
exists currently, while requiring minimal effort and time to fit strategies and provides rich internal interfaces.
specify and apply these tradeoffs to a program. We use CQual, a static analysis tool, to track the possible
We believe that Scrash will help developers to allayspread of sensitive information [14]. Sabelfeld and Myers
users’ privacy concerns about using crash reporting toold13] survey language-based systems for statically tracking
and dissuade users from turning off the automatic crash rgnformation flow in a secure manner. Tracking information
porting features in their applications. Widespread use oflow typically involves removing covert channels within a
remote crash reporting will aid developers in improving program, which can require extensive code modifications.
the overall quality of software, in addition to helping make While information-flow concerns are a central theme of this
users aware of software patches for problems that they anork, we do not address the issue of convert channels.
experiencing.

7 Future Work

6 Related Work
Changes to Scrash in the short term mostly involve im-

To the best of our knowledge, there has been no previouBrovements to the analysis phase. The implementation of
research published on the topic of limiting crash data tocQual that our current system uses is at times too conser-
ensure privacy. The only other sources to mention this is¥atlvé — it marks too many variables &sensitive -
sue are the aforementioned Department of Energy advisorg!t We €xpect to be able to use a more accurate version
about Microsoft's Dr. Watson [12] and an online article on 500N The new implementation, currently under develop-
the same subject [18]. Both sources suggest that the usgrent, will use a polymorphic analysis of functions so that

should disable crash reporting altogether to avoid a privacy'°re variables can be safely labeled insensitive. Modifying
risk. Scrash to work with C++ is another area of active interest;

Qual has recently been extended to work with C++ code.

Dr. Watson [4], the independent BugToaster applicationC ") .
In addition, we hope that support for Scrash will be in-

for Windows [2], the Bug-Buddy bug reporting tool for . ;
GNOME [1] and the Talkback quality reporting agent for corporated into some of the standard bug reporting tools,
Netscape/Mozilla [3] represent the current state of the art ipUch @s the GNOME Bug-Buddy. Another avenue would

remote crash reporting software. All are capable of sendin%e to combine runtime error detection tools, such as Stf"‘Ck'
back portions of the program’s memory contents, including uard or CCured [5, .9]’ V\."th Scrash. When these r“”“”_‘e
the registers, call stack and heap. Bug-Buddy is the least a420!S would detect a violation, Scrash would send a core file
tomated of the four, starting automatically when a GNOME© theldeveloper. _Thls pairing would aid in the detection of

program fails but then requiring a high degree of user par_secunty vulnerabilities such as buffer overruns.

ticipation to send a crash report. The other three require

:);;)(/):the consent of the user via a dialog box to send a crasg Acknowledgments

_The core file cleaning process is analogous to the scrully sy people have contributed to this project. Dan Wilker-
bing process that 'Gutmann adv_ocates for securely deletingy, and Rob Johnson implemented many last-minute CQual
sensitive information from media, such as RAM or mag-featyres for us, while John Kodumal, Jeff Foster, and the
netic media [10]. His cleaning process is aimed at protectiest of the CQual team provided advice on using CQual.
ing against physical attacks against storage media that afe thank Ben Liblit, David Gay, and Jeremy Condit for

not easily erasable. Other work focuses on creating a largg,qjr insightful comments and suggestions. Finally, David
block of erasable memory from a much smaller block USpagner provided helpful guidance along the way.

ing cryptographic techniques to achieve similar ends [6]. In
contrast, we view our cleaner as operating ondbetents
of files to eliminate sensitive information so that they mayReferences
be safely sent over the network.
There is a large body of work that describes techniques[1] Jacob Berkman. Project Info for Bug-Buddyttp:
for efficient allocators [17] and garbage collectors [16]. IIwww.advogato.org/proj/bug-buddy/ ,

(2]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

2002.

Bugtoaster. Do Something about Computer Crashes.
http://www.bugtoaster.com , 2002.

1
Netscape Communications Corp. Netscape Quality[

Feedback Systenhttp://wp.netscape.com/
communicator/navigator/v4.5/gfs1.
html , 2002.

[15

Microsoft Corporation. Dr. Watson Overview.
http://www.microsoft.com/TechNet/
prodtechnol/winxppro/proddocs/
drwatson%_overview.asp , 2002.

Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton. Stack-

Guard: Automatic Adaptive Detection and Prevention[17]

of Buffer-Overflow Attacks. IProc. 7th USENIX Se-
curity Conferencgpages 63—78, San Antonio, Texas,
January 1998.

Giovanni Di Crescenzo, Niels Ferguson, Russell Im-[18]

pagliazzo, and Markus Jakobsson. How to Forget a
Secret. InProceedings of Symposium on Theoretical
Aspects of Computer Scienceimber 1563 in Lecture
Notes In Computer Science, 1999.

David Gay and Alexander Aiken. Memory Manage-
ment with Explicit Regions. '8IGPLAN Conference
on Programming Language Design and Implementa-
tion, pages 313-323, 1998.

David Gay and Alexander Aiken. Language Support
for Regions. INSIGPLAN Conference on Program-
ming Language Design and Implementatiqgrages
70-80, 2001.

Scott McPeak George C. Necula and Westley Weimer.
CCured: Type-Safe Retrofitting of Legacy Code. In
Principles of Programming Language2002.

Peter Gutmann. Secure Deletion of Data from Mag-
netic and Solid-State Memory. Bixth USENIX Se-
curity Symposium Proceedings996.

George C. Necula, Scott McPeak, Westley Weimer,
Raymond To, and Aman Bhargava. CIL: In-
frastructure for C Program Analysis and Trans-
formation. http://www.cs.berkeley.edu/

"necula/cil , 2002.

U.S. Department of Energy Computer Incident Advi-
sory Capability. Office XP Error Reporting May Send
Sensitive Documents to Microsofthttp://www.
ciac.org/ciac/bulletins/m-005.shtml ,
October 2001.

(16]

[13] Andrei Sabelfeld and Andrew C. Myers. Language-

Based Information Flow SecuritylEEE Journal on
Selected Areas in Communicatiodanuary 2003.

4] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and

David Wagner. Detecting Format String Vulnerabil-
ities with Type Qualifiers. InM0th USENIX Security
Symposiumpages 201-220, August 2001.

Kiem-Phong Vo. Vmalloc: A General and Efficient
Memory Allocator. Software Practice & Experience
26:1-18, 1996.

Paul R. Wilson. Uniprocessor Garbage Collection
Techniques. IProc. Int. Workshop on Memory Man-

agement number 637, Saint-Malo (France), 1992.
Springer-Verlag.

Paul R. Wilson, Mark S. Johnstone, Michael Neely,
and David Boles. Dynamic Storage Allocation: A
Survey and Critical Review. IRroc. Int. Workshop on
Memory ManagemepKinross Scotland (UK), 1995.

Brandon Wirtz. Dr. Watson’s a Big-Mouth.
http://www.griffin-digital.com/
dr__watson.htm , 2002.

